Full Groups and Orbit Equivalence in Cantor Dynamics

نویسنده

  • K. Medynets
چکیده

In this note we consider dynamical systems (X, G) on a Cantor set X satisfying some mild technical conditions. The considered class includes, in particular, minimal and transitive aperiodic systems. We prove that two such systems (X1, G1) and (X2, G2) are orbit equivalent if and only if their full groups are isomorphic as abstract groups. This result is a topological version of the well-known Dye’s theorem established originally for ergodic measure-preserving actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems

Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...

متن کامل

Flow-orbit Equivalence for Minimal Cantor Systems

This paper is about ‡ow-orbit equivalence, a topological analogue of even Kakutani equivalence. In addition to establishing many basic facts about this relation, we characterize the conjugacies of induced systems that can be extended to a ‡ow-orbit equivalence. We also describe the relationship between ‡ow-orbit equivalence and a distortion function of an orbit equivalence. We show that if the ...

متن کامل

N ov 2 00 7 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010